Publish in this journal
Journal Information
Share
Download PDF
More article options
ePub
Visits
...
Artículo original
Available online 31 July 2025
Predicción de morbimortalidad mediante inteligencia artificial aplicada al electrocardiograma: un metaanálisis
Prediction of cardiovascular morbidity and mortality using artificial intelligence applied to the electrocardiogram: A meta-analysis
Visits
22
Lorenzo Fácila Rubioa,
, Rafael Vidal Pérezb, Miguel Beneditoa, Maria Lourdes Sempere Andreua, Carlos Escobar Cervantesc, Alberto Cordero Fortd
a Servicio de Cardiología, Consorcio Hospital General Universitario de Valencia, Universitat de València, Valencia, España
b Servicio de Cardiología, Complejo Hospitalario Universitario de A Coruña, A Coruña, España
c Servicio de Cardiología, Hospital Universitario La Paz, Madrid, España
d Servicio de Cardiología, Hospital Universitario San Juan de Alicante, Alicante, España
This item has received
Received 24 April 2025. Accepted 09 July 2025
Article information
Abstract
Full Text
Bibliography
Download PDF
Statistics
Figures (5)
Show moreShow less
Tables (3)
Tabla 1. Características de los estudios incluidos
Tables
Tabla 2. Comparación de la precisión diagnóstica entre algoritmos de deep learning y machine learning convencional
Tables
Tabla 3. Resultados de los análisis de subgrupos por tipo de resultado y características de estudios
Tables
Show moreShow less
Resumen
Introducción y objetivos

La inteligencia artificial (IA) aplicada al análisis del electrocardiograma (ECG) ha mostrado ser prometedora para predecir la morbimortalidad cardiovascular. Este metaanálisis evalúa la precisión diagnóstica y pronóstica de algoritmos de deep learning (DL) y machine learning (ML) en la predicción de eventos adversos y mortalidad cardiovascular.

Métodos

Se realizó una búsqueda sistemática en las bases de datos como PubMed®, Embase®, Cochrane® y Web of Science® (2010-2024). Se incluyó estudios que evaluaron la IA aplicada al ECG para predecir la morbimortalidad, y se calcularon las medidas de precisión diagnóstica mediante metaanálisis. El protocolo fue registrado previamente en PROSPERO (CRD420251017753).

Resultados

Se incluyeron 28 estudios con 3.569.731 pacientes. Los algoritmos de DL mostraron mayor precisión que los de ML (AUC combinada: 0,85 frente a 0,78; p<0,001). Para la predicción de mortalidad y los eventos cardiovasculares adversos mayores, la sensibilidad y la especificidad fueron altas. La heterogeneidad entre los estudios fue moderada-alta (I2=68%, p<0,001).

Conclusiones

Los algoritmos de IA aplicados al ECG son efectivos para predecir morbimortalidad cardiovascular, con los modelos de DL demostrando mayor precisión que los de ML. Se requiere validación externa en las poblaciones diversas antes de su implementación clínica generalizada.

Palabras clave:
Electrocardiograma
Inteligencia artificial
Deep learning
Machine learning
Pronóstico
Abreviaturas:
DL
ECG
IA
MACE
ML
Abstract
Introduction and objectives

Artificial intelligence (AI) applied to electrocardiogram (ECG) analysis has shown promise for predicting cardiovascular morbidity and mortality. This meta-analysis evaluates the diagnostic and prognostic accuracy of deep learning (DL) and machine learning (ML) algorithms in predicting adverse events and cardiovascular mortality.

Methods

A systematic search was conducted in PubMed, Embase, Cochrane, and Web of Science (2010-2024). Studies evaluating AI applied to ECG for predicting morbidity and mortality were included, and diagnostic accuracy measures were calculated through meta-analysis. The protocol was previously registered at PROSPERO (CRD420251017753).

Results

A total of 28 studies with 3 569 731 patients were included. DL algorithms showed higher accuracy than ML algorithms (combined AUC: 0.85 vs 0.78; P <.001). For predicting mortality and major cardiovascular adverse events, sensitivity and specificity were high. Heterogeneity between studies was moderate to high (I2=68%, P <.001).

Conclusions

AI algorithms applied to ECG are effective for predicting cardiovascular morbidity and mortality, with DL models demonstrating higher accuracy than ML models. External validation in diverse populations is required before widespread clinical implementation.

Keywords:
Electrocardiogram
Artificial intelligence
Deep learning
Machine learning
Prognosis

Article

These are the options to access the full texts of the publication REC: CardioClinics
Member
Socios SEC
Use datos de acceso a SEC en el menú Acceder.
Si es socio de la Sociedad Española de Cardiología y no puede acceder con sus claves, escriba a rec@cardioclinics.org.
Members of SEC
Use the Society's website login and password here.
If you are member of SEC and you have some problems with your login data, please contact with rec@cardioclinics.org.
Subscriber
Subscriber

If you already have your login data, please click here .

If you have forgotten your password you can you can recover it by clicking here and selecting the option “I have forgotten my password”
Subscribe
Subscribe to

REC: CardioClinics

Purchase
Purchase article

Purchasing article the PDF version will be downloaded

Price 19.34 €

Purchase now
Contact
Phone for subscriptions and reporting of errors
From Monday to Friday from 9 a.m. to 6 p.m. (GMT + 1) except for the months of July and August which will be from 9 a.m. to 3 p.m.
Calls from Spain
932 415 960
Calls from outside Spain
+34 932 415 960
Email
Idiomas
REC: CardioClinics
Article options
Tools
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?